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ABSTRACT

An alternative to the normal model in time series
analysis is presented wherein the sequence of random
variables have exponential and mixed-exponential marginal
distributions. The moving-average and autoregressive
models are analysed with respect to serial correlations
and conditional expectations. The mixed-exponential
autoregressive model and the mixed autoregressive-moving-
average model with exponential marginals are presented.

A method of estimating the serial correlation coefficient
is examined, and digital computer simulations of several

of the models are given.
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I. INTRODUCTION

Gaver and Lewis (1975) have described a first-order
autoregressive stationary sequence of random variables
having exponentially distributed marginal distributions,
and have given extensions to Gamma distributed processes.
Lawrance and Lewis (1975) have described similar models
for the moving-average process. Motivation for these models
includes finding an alternative to the normal theory of
time series analysis, and developing a model with correlated
random variables with non-normal marginals.

Several extensions of these models are also of interest,
including a mixed-exponential autoregressive'process, a
second-order moving-average process, the kth-order moving-
average process, and the mixed autoregressive moving-average
process and the estimation of the parameters concerned.

This thesis is concerned with detailing the properties of
some of these extensions.

Digital computer simulation of these models is also of

interest, particularly in the estimation of parameters.



II. THE EXPONENTIAL AUTOREGRESSIVE MODEL (EARIL)

A basic stochastic model often useful in representing
time series is the first-order autoregressive model. Unlike
the moving-average process, discussed later, the current
value of the first-order autoregressive process is a linear
combination of the previous value of the process and an
independent error term. Although similar in appearance to
the moving-average model in that it, too, is a linear com-
bination of random variables, a principle difference is that
each value of the EARl sequence, regardless of order, is
correlated (depending on the correlation coefficient) to
every previous value. It can be written as an infinite
moving-average over the sequence of 1l.l.d. error terms. e

The general form of the kth-order autoregressive model
is

X. . €5
1

X = PXg e ¥ PoXy pay toeee Py i

Only the first-order process will be considered here
as it has great potential for describing actual series, and
higher-order processes, with the conditions that will be
imposed, are difficult to analyse. The first-order process,

then, is
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If the e, are normally distributed random variables, the
x; are a normal sequence, and this is the case which is
explicitly or implicitly considered in the literature
(see e.g., Anderson, 1971; Box & Jenkins, 1970). In this
thesis the condition will be imposed that the {xi} will be
a stationary sequence having a marginal distribution that
is exponential with parameter A. A sufficient condition for
such an AR sequence to be stationary is that le] <1
(Box & Jenkins, 1970).

The determination of the error term €4 is relatively

simple (Gaver & Lewis, 1975). Beginning with the basic

ARl equation, and assuming that the x; sequence is stationary,

and taking the Laplace transforms

-sX; “SPX, -S€;
E{e } Efe }

-SpX, _ -se.
E{e - l}E{e 3

by the independence of (ei, xi_l). Therefore,



-se, Wa
o (s) =Ele 1}-Ele__1

-SpX, _
- E{e » l}

Now the distribution of {xi} is defined to be exponential

{X)iy 1z€.5

Efe 1y = .
A+ s
Therefore
¥ (s) A
6 (s) = i _ X + s
€; ¢ (ps) A
i-1 X + ps
_ ps + A _ b A
WS ot T -

It is simple to see that this is in fact the Laplace trans-
form of a positive random variable, by inverting with

respect to s; for 0 < p <1

e. = 0, probability p 1T .2,

€5 probability (l1-p),

where ei is an exponential random variable with parameter A.

Therefore



X = PX;_q v probability p I2.3

d PX; + ei probability (1l-p).

It is simple to see that it is not possible to allow p to
be hegative; since x, , is by definition positive and with
pXy negative it is heuristically clear that it is impossible
to find an independent € which makes X5 positive.
Oowing to the nature of the model it will be seen that,
unlike a mov-ng average process, there is a partial corre- Movis g
lation of all orders. In examining the joint distribution
of X and Xi_qr it is easier to analyse the joint Laplace

transform. Thus

i i
I T e T |
and
Xj1 T OPXjo Y Eip-
Therefore
i E{e_slxi il Szxi—l} . E{e—sl(p X; 5 T opeg 4 7 e;) -8y (px;_otes )y

2 :
-(p“s, + ps,)x._ -(ps, + s)&_ -S.E.
= E{e 1 2774 Z}E{e 1 Q i l}E{e i i,

4

10



by the independence of Xi_or €577 €4

By definition

ey A
and by derivation
-8€E,
+
E{e l} = %T%Q,
so that
=S¥, "S,X, g B N A+p(psl+sz) Atpsy
E{e } = 5
At+p sl+ps2 )\+psl+s2 A+sl
A(A+psl)

(A+sl)(x+psl+sz)

Ohe aspect of this equatiop is that if we set S, =8, =8
we get the Laplace transform of Xy + Xi_qr and it is not
Gamma (2) because of the dependence between x; and x,_,.
It is Gamma (2) if p = 0, however. If either s, or s, is
set to zero we get the marginal exponential distributions
of Xy and Xi_q7 but the transform is not symmetrical in S
and Sy-

The first and second moments of x, and x; , can be

obtained by taking the first and second partial derivatives

with respect to each variable, and they are found to be the

1l



same as expected for a marginal exponential distribution,
. _ _ I 2a 2y _ 2
i.e., E{xi} = E{xi_l} = 1/X; E{xi } = E{xi_l } = 2/A°,
The variance is then l/Az.

All that remains to finding the correlation is to find

the expected value of the joint distribution. We have

a2
E{x.X. .} =
i d-1 9S,0S Y. .
i i) sl—O+,sz—0+.
- pt+1
2 -
A
Thus, since
- p+t1 1 _
Cov b, Xyl o8 ‘fi

and

Cov(xixi_l)

Corr (x,x%; ) =

Il
o)
.

Var(xi)Var(xi_l)

Note that the first-order serial correlation is bounded by
0 and 1 so that the EARl model in some respects is a more
versatile model than the EMAl model discussed later. For
the EMAl model the correlation is positive and bounded
above by 1/4.

The other serial correlations may be found in a similar

way. All that need be computed is the joint expected value

12



of the lagged values of {x}. For example, p, may be deter-
mined by finding E{xixi_z} and replacing it in the above
formula, although it is known from the theory of Markov

k

processes that pk = p-. It can be shown without much

difficulty that

k
-8.X, = S,X._ A(A + p s,)
Ele 11 S - 1 II.4
(A + p sy + sz)(x + sl)
so that
k
. p *+1

E{xixi—k} == ——}\2-—' ’

and hence that
k
Corr(xixi_k) = p, k=0, 1, 2, con)

as surmised above.

Nothing has been said about about conditions for
stationarity in the EAR1l sequence. It is simple to check,
however, that if the sequence starts with _ W as an <
exponentially distributed random variable, and then con-

tinues as defined by II.l for i =1, 2, ... with the

error sequence II.2, then the x; sequence is stationary.

A. CONDITIONAL EXPECTATIONS OF THE EARl SEQUENCE
The conditional means and variances of pairs of random

variables in the sequence {xi} may be examined for comparison

13



with those of other bivariate exonential distributions and
as a potential method for evaluating the sample coefficient
of correlation.

In any process, the conditional expectation (mean) of

the x, ., term, given the ith is

Blxg,ylx; = th = [ x,f xl+1|x Xippl®) Ax54

Foxg o E(0xg ) A%y

£ (t)
o !
The joint distribution of X; and X1 is not available in
a simple form. The joint Laplace transform of this joint
distribution has, however, already been established (I1.4):

© -S.X. — S,X,
i A ¢ 27i+1
s, 5. (51’52) /. e fx o (x P X5 l)dx dx

iTi+l 0 i7i+l +

Therefore, if the first partial derrivative with respect
to the second variable of the joint Laplace is taken,
% i7%2%i+1

—= [[-x., ,e £ (x.x
352 0 i+l xixi+1

[«3]

) dx.dx.
5

i+l i+l

and then S, set to 0+, we have

14



=S, X,

¥ S
= [[-x,. .6 4 (x.,X.,.) dx.dx.
2 sz=0+ 0 i+l X;X; 49 1 i+l i77i+l

and it will be found to be the same form as the negative

of the Laplace transform of the numerator of the conditional
expectation, E{xi+l|xi = t}, identified on the previous
page, viz.,

(=]

numerator = Of xi+lf(xi’xi+l) dxi+l

i¥i41) %39%5 49

Il
-
-
»

Laplace transform i+l -

Therefore, applying this procedure to the Laplace of the

joint distribution ¢, to find E{xi+l x. = t}, first

i
differentiate with respect to Sy then set S, to zero,
invert with respect to Sy multiply by minus one, and
finally divide by the marginal distribution of Xy for the
desired result.

Applying this to the EARl model yields the following,
(1 - e—xt(l—p)/p)

x. = t} = 1

E{x 11 %3 *(1-p)

Nearly the same scheme may be used to find the 'backward'

conditional expectation, E{xilxi+l = t}. The procedure here

15



is to take the partial with respect to the first variable,
set s, to zero, invert with respect to Sy multiply by
minus one, and divide by the marginal of Xi1° This yields
the following for the EAR1,

E{xi|x =t} = A_l{pkt + (1-p)} .

i+l
Other conditional expectations may also be found in a
similar manner. The conditional expectation of any function

L & RX

- El given xl is (Zehna, 1970)
2

©o

E{¥(x,) |x; 3 = 60f v(x,) £(x,]x;,) ax

2

[+ 2]

°°f W(xz)f(xlxz) dx2

Again, the Laplace transform of the joint distribution is

available

-S
® = E{e

1% ~ szxi+1}

o =5 X, - S_.X.
1%~ Sp¥in
offe fxixi+1‘xixi+1) dx;dx; .-

The second partial derivative of ¢ with respect to S,

is

16



2 © -S.X. — S.X.
379 2 it s 1 27i+1

= [[x! e : 4 (x x.,,) dx.dx. ..
(352)2 0 i+l XiXiiq s i+l e Gy £ 3 |

And setting s, to zero yields

£ (x

) dx.dx.
0 X;%¥541 17+l

L 50
i71i+1

This, of course, is identiml to the Laplace transform of

-s. X,
the numerator of E{xi+l|xi} with respect to X, E{e 1 b

Applying this procedure in a manner similar to that for
finding the conditional means, to find the conditional
second moment of X541 given X, i) take the second partial
derivative of 2 with respect to the second variable (s,);
ii) set s, = 0+; iii) invert with respect to Syi iv) divide
by the marginal of X, . As with the conditional mean, the
procedure for finding the conditional second moment in the
'backward' sense, E{xilxi+l}, is the same with the first
and second variables being reversed.

For the EARl process, then, the two additional second

moments are

e Tl ! 5 - At e~ At (1-p)/p
(1-p) (1-p)p

17



and

E{x)|x,,, = t} = 2 (202-p) + 42" L(p-p3) + 2272 (1-p) .
These conditional moments (and the variance which follow
directly) present a contrast to those of the MAl process
(presented later) in which all forms are exponential. Also,
allowing p to approach zero or one produces different results,
namely that as p approaches one (i.e., completely correlated
events) the distributibn becomes degenerate and all members
of the sequence are identical to the first. If p goes to
zero, it becomes an ordinary Poisson process. Both ideas

are summarized in the table below. A partial check on the
accuracy of the above is made by first multiplying by the
conditioning marginal and then integrating. The result is

found to be the remaining marginal's expected value.

Term Lim {term} Lim {term}
p~>0 p~>1l
E{xi+1|xi = t} 1/ t
E{xy|x;,, = t! 1/ t
E(xl,|x, = t) 2/3% £
E{xilxi+l = t} 2/>\2 : £

18



An important property of Markov sequences is that while
the correlation between variates k apart is non-zero out to
infinity, the correlation between X5 and Xk given any
value of x. between x. and x,,,, i.e. i < j < itk is zero.

Jj s i+k
The zero partial correlation is a means of identifying a

Markov sequence.

19



III. FIRST ORDER AUTOREGRESSIVE MIXED EXPONENTIAL PROCESS

In this section, the basic autoregressive model will
be used, but rather than demanding the marginal distribution
of the {xi} sequence be a simple exponential (1), a marginal
distribution of the three-parameter mixed exponential
(Xl, Az, m) will be imposed. It will be shown that for
certain values of Al’ Az and 7, an €; sequence exists
which gives this marginal distribution.

This model is far more versatile with respect to
fitting observed distributions, particularly very skewed
ones. With suitable choices of the parameters, distributions
having any desired mean and coefficient of variation between
1l and «» may be produced (Cox, 1962).

Using the autoregressive scheme mentioned earlier,
X, = pX;_ 4 +reiny 0<p<l, (i=20,1, 2, ...)
-8X, —pX;_18 -~ g8

¢xi(s) = E{e '} = E{e

1l
=
[
0
O
[—

]
t
Py
(0]
4
|
[
—
td
o}
o
=
—
-

€50 X5 4 independent.

20



Therefore

i ) '(QS)

The probability density function of the three parameter

mixed exponential is

—Alx —Azx
f(x) = mA e + (l-n)Aze "

The Laplace transform of this, and hence the transform of

the imposed ma ginal distribution for the xi's will be

ﬂll (l-'n)}\2
() =xFs TR, s

Allz + Als + (l-w)kzs

(Al + s)(k2 + s)

Similarly, the transform of PX; 1 will be

A A, + TA.ps + (l-m)A,ps
2
¢x (pg) = 12 1 .

i-1 (kl + ps)(k2 + ps)

Then

21



Allz + wklps + (l-n)xzps
(Al + s)()\2 + s)

+ nklps + Az

(Al + ps)(>\2 + ps)

A A

12 ps - anps

+ps)()\2 + ps)(llkz + nkls + Azs ~nx2s)

-+ s)()\2 + s)()\lk2 + wklps + Azps ~nl2ps)

(A, + ps)()\2 + ps)()\l)\2 -+ s(nkl + AZ

TXi + s)(k2 + s)(kl)\2 + s(ﬂkl + Az - nkz))

~nA2))

Alkz
(A, + ps) (A, + ps) (s + — )
_ it 2 nAl + kz ﬂkz
AL A
(A, + s) (XA, + s) (ps + 102 )
1 2 A, + A, — TA
1 2 2
Let
ot ihe _ Mho
nxl + Az - nlz nkl + (l—n))\2

Consider C as a function of m. At w =1, C = Az, and at
T=0, C= Xl. The derivative of the denominator is

Ay = kz, so that the denominator increases from Az to Al

1

22



monotonically as m goes from 0 to 1 if kl > Az. Therefore
C decreases monotonically from Al to Az as m goes from 0

to 1, and also A, < C < A, and C > 0. By extension

Al <Czx< Az or AZ < C«< Al,

parameters xl,xz is larger.

depending on which of the

Then

+

(A ps) ()‘2 +p s) (s + C)
be (8) = X F (%, ¥ (T F p9)

(ps + A (ps + A1) (£ + )

(A, + 8) (A, + 8) (T + 8)

2 2 2
311A2+psxlkz+ps A2+ps A1+C11A2—pCs

(A, + 8) (A + 8) (5 + )

1
p + (1-p) (3)

This is not necessarily the Laplace transform of a distribu-
tion function; it is shown that this is the Laplace transform
of a distribution function for certain values of the three
parameters by explicitly inverting it. Churchill (1970)

summarizes Heavside's equations in stating

If f(s) is the quotient p(s)/qg(s) of two
polynomials such that g(s) has the higher
degree and contains the factor s-a, which

is not repeated, then the term in F(t)

23



corresponding to that factor can be written
in either of these two forms:

at

at p(a) e ,

d(a) e or
q'(a)

where ¢(a) is the quotient of p(a) divided
by the product of all factors of g(s) except
s-a. This Theorem is valid when the constant

a is any complex number.

Therefore, taking the inverse Laplace transform, term by
term, using Heavside's equations and writing it as a proba-

bilistic mixture yields, if ), # Ayr €1y # Cor piy # C,

(term 1) with probability p, €; =0

2 =
(term 2) (p)

(term 3) +(E)e

(term 4) +(3)e

:

with probability (1-p)., €5 has density

Gos Edletin, Bt :

1, -Ct/p e b B L e T e Y W
C c
(Ay = ) (Ay = =)
FT

1 1 i1

-t -Xlklkz-pklkllz+pl A A2+pllklll+CAlA

C
(g = AP (2 = 2y)

1, "X 2222y

- 21

£ =A, A A A1 Al An A, +eA, A A +CA Ay =pCA) ),

C
Ay < Ay) (= =25

24



This may be rewritten as

e; = 0, probability p;

Otherwise the density is

-Ct/p (C = A)(C = A,)p

- (o
(p2;, = Q) (C - plz)
-\t
1 {C = x,){pA, = A,)
+ Ale 1 L 2
et e % Ay (oA, = A)
# Aze ;, probability (1l-p),
(A = A,) (pr, = ©)
where
AL A
c = 1.2
ﬂAl + (1 - ﬂ)lz
Al,kz >0, 0 <m<1l, 0< p <1, with points of singularity
at pll = C, pAz = C, Az = Al.

Again, we are assuming that we have a density function
i.e., that the function is positive and its integral equal

to one.

25



For the case pPAy = cC,

e:. = 0, probability p

Ayt AZ(AZ - pll)(plz > Al)

= e , probability (1l-p).
p(Al - Az)(x2 - Al)

For the case pPAy = C,

€ = 0, probability p

<%t Balpds = A JUpME =1,
= e 1 1772 11 2 probability (l-p).

p(A1 - Az)(xz - kl)

For the case A< A the necessary conditions for Heavside's

2l

equation are not met, and the inverse must be taken after

equating A to Az. Recalling from above,

P W (A + ps) (A, + ps) (XA, + WA S + AyS - mA,S) .
€. ~
i (Al + s)(>\2 + s)(Al)\2 iz nklps +A2ps nlzps)
Setting Al = Az = A,
- (A + ps) (A +4ps)(12 + mAS + As - T)\s)
(A + s) (X + S)(A2 + mAps + Aps - mwAps)
_ A+ ps
A+ s

26



Finally inverting with respect to s,

e. = 0, probability p

xe M, probability (1-p).

Which is, naturally, the same as that for demanding {xi}
be distributed exponential, parameter A, or that m = 0, 1.
The inverse transform, a function of t, may be verified as
being a probability density function by showing that it

i) integrates over the domain to unity, and ii) it is
non-negative over the domain. Establishing the first

condition,

“£iC - Al)(C - A,)

[egdt=p+ (1-p) f e /P e as
0 0 (pAl - C) (pA,y - C)
At A (C = A) (pAy = A,)
+ (I~p) [ e x i 1 1 2_ at
0 (Al - xz)(C - pxl)
© =it A,(C = A,) (pA, = A,)
¢ (3ngy T @ 2 2 2 % 1 4t
0 (Al = Az)(pkz - C)
-(C - x)(C = ),) (C = Ay) (pAy = A,)
Ty o 1 S 1 1 2

(pkl - C)(p2r, - Q) (Al - kz)(c - pxl)

(C = A,) (pry = A;)

(Al - )\2)(p)\2 - C)

27



/ € dt p + (l-p)[(C-Al)(C-Az)(Al—kz)+(C-Al)(pAl-A2)(pAZ-C)

+(C=1y) (phy=A;) (C-pA)) ] # (A3=2,) (C=2p) (pAy=O)

= p + (1-p) (-CpA;A,=CCpA,+pA Ay Ay + ) A +CppA A,

+ CCAZ-ppﬁklkz—CA112+CCpXZ—CCAl+CpAlX1

—CPpPAA,=CPpA A, +CA A, =pA A A +ppAlA2l2)

2°2 172 1'1°2

2 (A = A (C = pA;) (PA, = C)
(A = A,) (C = pX;) (pA, = ©)

=p+ (1-p) ——2 L2
(A; = Ay) (C = pA)) (P}, = ©)

The non-negativity conditions are not as readily established.

Analysis is facilitated by forming the following cases:

Case 1 s pxz > G
Case 2 ° : pAz < e
Case A e plz > Al
Case B s _ pxz < Al

28



With the previously stated conditions, Al' Az >0, 0<p <1,

and A, < C < A it is clear that case 1A, 2A, and 2B are

1l - 27
of concern and 1B is not well-defined.

Beginning with case 2B (p)\2 < C and plz < Al), it is
clear that each of the coefficients of the exponential terms
is non-negative and hence, over that parameter range, the
function is non-negative.

For case 2A, the first and second terms are non-negative
and the third non-positive. If the exponent of the second
term is reduced from -Alt to -Ct/p this will decrease the
value of the positive term. Similarly, if the exponent of
the third term is increased from —Azt to -Ct/p, the value
of this negative term will be decreased. Thus, the resulting

function will everywhere be of lesser or equal value to

the original form. In terms of equations,

elC - Al)(C -1k Al«l- Al)(pkl - Az)

g :IL e"Ct/p 2) i
(€ - Dll)(plz - C) (A, - lz)(C = Dll)

Ay (C = 2)) (P, = Ay)

(A; = A,) (pA, = C)

-+

29



= e Ct/p (C(C-27) (C=2,) (A=A,)+A (C=2;) (pA;=25) (pA,=C)
+ AZ(C—Az)(pAZ—Al)(C- pi))

+ (A, = A)lpdy - €V (C - piy)

N e-Ct/p (k2 - Al)(C = pkz)(C = p)\l)()\2 + Al = )

(Al = A,) (pA, - £y e - pkl)

=P o, + 2 -0 20

&

The fourth case, pA, > C, cannot explicitly be demonstrated

2
to be everywhere non-negative, although it is so at t = 0
and as t approaches infinity. Even without considering this
case, the model has great versatility, particularly with

small values of p.

30



IV. ESTIMATION OF p FOR THE EXPONENTIAL
FIRST-ORDER AUTOREGRESSIVE MODEL

Using the exponential ARl model defined above,

x5 ~ Exp (M) i=8 1, 2, «ss
P L}
%5 PXi1 b €4
[ e
=5 L P €, _ ’
j=o  *7J

where si is 0 with probability p, and exponential A with

probability (l1-p). Now if a new random variable is defined

as
- )
Zi = l= l' 2, L B
Xi-1
then,
+ g! '
_ xl-l & - o ]
zi = - p + .
-1 %41

z, = p + ’ prObability (l_p)
P } _probability p

31



Clearly, if the sample is large enough and/or p is large
enough, some of the zi's will "estimate" p "exactly."

Now in a sequential estimation situation one only has
to observe the minimum of successive zi's, and as soon as
a match is observed between a current value of z; and the
minimum of the previous zi's, that value is exactly p. The
time to the first occurrence of the value p in the sequence
z; is geometric with parameter p and the time to the second
match, say M, is the sum of two independent geometric
random variables. This is a negative binomial rgndom
variable and E(M) = 2/p.

It is also clear that once p is known it is possible
to unravel the ei error sequence, and there will be M-2
(a random number) of exponential variates from which to
estimate the exponential parameter A. This can be done in
the usual way, and more observations can be taken to achieve
any desired precision in the estimate of ).

For fixed times of observation, say from X to X
giving n observed values of zir there are three possibilities:

(1) A match occurs in determining the minimum z;
sequence, so that p is known exactly, as above. The probability
of this is 1 - (l—p)n - npl(l—p)n-l, which will be very
close to one for p ~ 0.5 and n large.

(2) Either a) for exactly one i, X, = PX; 4

(probability np(l—p)n-l) or
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b) for no i do we have X, = pX,
1 i-1
(probability (l—p)n).
In the second case it seems fairly clear that a reason-

able estimator of p, with a positive bias, will be min (z.).

n+m) /2

1<i<n
Note that the ratio e;/x;_ ; has an F-distribution, e
F2'2, where
N n/2-1
Fooo(y) = = =
m,n"Y n
2

2
T+ ny/m

Since the ratio is independent of ), so will any estimator
of p based on the zi's.

It is possible to get an exact estimator of p, with
known bias term, by averaging the zi's. The variance is of
order 1/n, whereas it is conjectured that the variance of
the estimator based on the minimum of the zi's is of order
1/n2.

Some simulation studies of the (min zi) estimator are
given in the Appendix. The simulations tend to substantiate
the speculation that the distribution of the minimum (zi)
(when it is not an "exact" match of p) is exponential
(p,n), the two parameter exponential distribution with
mean = p + 1/n and minimum value p. (Johnson & Kotz, 1970).

It would thus appear that
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Min (z;) = o , probebiiike 1 - (101 - spfl-pf™ "

Exp (p,n) , probability (1=0)® + np(1-p)2~L

The expected value of this is
E(min(z;)) = E(p) = (1- (1-p) ®-np (1-p)*"1) o+ ((1-p) ®
n-1
+ np(1l-p) ) (p+1/n)

with a lower bound of p.
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V. FIRST-ORDER EXPONENTIAL MOVING AVERAGE PROCESS

The general moving average model of time series analysis
(see e.g. Box & Jenkins, 1970) may be described as a
sequence of random variables formed as the weighted average
of a number of previous observations. It should be noted
that it is not a true "average" in that the weighting
coefficients do not sum to unity (or any other specified
number) .

(i=0,+1,22,...),

+ +

Xy = B8y ¥ Bofgen Y oo Y Befignn t Ciux

(-1 < Bi < 1)

This is one of the two simplest forms of times series
models (the other being the autoregressive model, discussed
previously), and hence is relatively straightforward in
terms of calculations and correspondingly limited in terms
of describing natural phenomena. As the number of terms
in the sequence is finite, the sequence may be shown to
be stationary (Box & Jenkins, 1970).

Considering, at first, the first-order forward moving

average process,

x' = - + .
Bel €1+l
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it is clear that there is first-order dependence, but

nothing further (i.e., X; may be correlated to X; 17 depending
on the correlation parameter, but not to X;_,). This first
order dependence is different from the Markovian ARl model,
where x; and x, , are conditionally independent. The model

is described as "forward" to distinguish it from the

"backward" process,
. = T T
X Be €51

whose properties are similar. Note that if the i.i.d.
sequence {ei}is normally distributed, Xy will be normally
distributed as well.

If the condition is imposed that the marginal distri-
bution of the xi's be exponential parameter A, the EAR1
model shows that we may construct a first-order moving

average as

’ probability B

“"Bes ¥ E.

i i+1’ probability (1-RB)

Verifying that the distribution of {xi} is Exponential (1),

the Laplace transform of the distribution is evaluated

as

36



Il

L{fxi(xi)} f;i(s)

-SX,
= E{le 1}

-sBe. -sBe. = se,
= E{e 118 + Efe 1 1y

-sBe. -sBe. -SE,
E{le )8 + Ele 1}e{e Ii*l}(1-p) ,

by the independence of the terms of {ei}. Thus, for any

i,

TR I A S 1
Xy A+ s  (A+ sB)(s + A)
_ =
A+ s
= L{Ae—xt}, Q.E.D.

The first serial correlation Py is defined in the

conventional manner:

E{x.x.,.} - E{xi}E{xi+l}

i+l
py = —=
Var{xi}Var{xi+1}
The expected value of the joint distribution of {xixi+l}

may be found in a number of ways. Two of these are i) to

examine the form produced by the product and ii) to find
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the first mixed partial derivative of the double Laplace
transform of the joint distribution evaluated at s = 0+.
Both techniques will be used here as the results will be

useful later.

We have
X; = Bei, probability B
Bei - ei+1 probability (1-8)
and
Xi41 = B€i+l ’ probability B

B€i+1 + €542 probability (1-8)

The product, then, is

_ 52 oy 2

X;Xi41 = B € €5417 probability B
Bei(Bei+l + €i+2)’ probability B(1-8)
(Bsi + €i+l)8€i+l' probability (1-B8)8

3 F 2
(Bei + ei+l)(86i+1 + €i+2)' probability (1-8)
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E{x;X;.4,} =8 ’E(pe, i€i+1)
+ g(1- B)E{B €5€5+41 T BEjE 42}
2 2
+ (1-B)BE{B ejey4y * Beyyy)

2. 3 <
(1-B) "E{B eje547 * Bejejyp + Bejyy €54161+2}

4

Defining y = E{g.}, and 02 = Var{ei}, then, by stationarity,
2
== E{e l} and g = Var{si+l}. Now,

2 . .
E{ejejpq) = Bleg}Blejg = wv # 0, by the independence

+3
2 2
of the terms of {e }, whereas E{el+] l+j} = u" + 0, by

definition. With this in mind,

E{x;X;,,} = 82(82u2)
+ 8(1-p) (8242 + gud)
+ (1-p) (22 + gu? + o®N

* (1-6)2(82112 +Bu2 + B(u2 + 02) * uz)

(l-B)o2 + u2'

Therefore,

g E{x. xl+1} E{x, }E{x1+l}

Var{xi}Var{xi+l}
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B(1-B) o2 + p? - 42

o2q?

B(1-8)

It should be noted that {ei} is distributed exponential

parameter A, so that oe = ue = 1/X, and this could have
h 1 i

been substituted earlier. This substitution will be useful
in considering higher-order moving-average processes. The
correlation Py is the most limiting aspect of the model as
the correlation of thé xi's is strictly non-negative and
bounded above by 1/4, as compared with the conventional
(i.e., normal) MAl model where -1/2 < Py £ 1/2. A second
problem associated with this EMAl model is the symmetry
of the functional form about B = 1/2. For purposes of
estimation, differentiation between a coefficient B of,
say, .15 and .85 will be impossible if estimat on is based
on py. As will be shown later, higher-order EMA models are
similarly limited. By the nature of the model, all higher-
order correlations in the EMAl model are zero.
A. LAPLACE TRANSFORM OF THE JOINT INTEKRVALS IN THE
EXPONENTIAL MOVING AVERAGE MODEL

The basic model is still

X, = Be., , probability B (0 < B < 1,

Be. + € probability (1-B8) i=0,*1,%2,...)

i i+l’
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and the product random variable is

probability
XK = Be.Be Bz
i%i+1 iPi+1
Bei(Bei+l + €i+2) B (1-B)
(Bei + €i+l)8€i+l (1-8)8
(Be, + €:,.) (Be,, 1 + €,..) f1-8)*
2 1 i+l i+l i+2 *

Taking the double Laplace transform, we have

-S
(s,,s,) = Efe
vl 12

X, = S,X.
¢ 13 2 l+l}

xilx

-s.Be. - s,Be.
BZE{e l e 1 2 l+l}

+ B(1-B)E{e

-s.(Be. + €.,.)
+ (l-B)BE{e 1 1 l+l

-s.(Be. + €.,,)
+ (l_B)zE{e b [ e [ i+l

41

-slse. - sz(Bei+

- SZBE

+ B:.,)
1 i+2 }

i+l}

= 8y(BEs 0 * €i+2)}



2 "S1Bej ~ SyBejyg

B Efe }

¢ (s..,8,)
XjeX5.y 172

=8 Be. = S,BE. i
+ g(1-g)E{e i | 2" i+l 2 1+2}

-slgei - (s1 + S2B)€i+l

+ (1-p)BE{e }

-s.Be: = (s, + s,B)e. = B F
+ (1-g)2E(e 1A 1 2P €34) 2%i+2,

-8,8¢e, -s,Be.
5 l}E{e 25141

82E{e }

-s.Be. -s.Be. -S.€.
+ g(1-g)E{e R TOE i+lypre 2%i+2,

i g Sl LU TN

-(s,+s,B) €.
+ (1-g) gE{e TIOTREE

-s,Be. -(s,+s,B) e, ~8,E
+ (l—B)zE{e & l}E{e 1 72 1+1}E{e 2 1.2}’

by the independence of {ei}. With By ™ exponential (}),

g A A
¢xixi+l(sl,sz) = B [A = le] [A - 852]

A A A
X% 851] [)\ + 852] [}\ t 52]

+ g(1-g) I

“’A ] [ + A'|" ]
A+ B8y A+ 8 T B8

+ (1-g) 8l

- SO A A
+ -0 g e s, T )
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2 2.4 2.3 353 53 2.2
¢x.x. (sl,sz) = (B"A" + B™A Sy + B7A S,y + B s, + BT $,5,
1 i+l
3.2 3 4 s 38033 ag a3 3,3
+ BT s,” + BA™ + BA Sy + BT S, B“A" - BTA s, + BT s,
+ B}\4 + B2>\3S + BABS " szzs - g 3214 5 B3>\3S L B2)\3
2 2 2 2
- 85%0. 20 2t + g%, Sl - 3123, - g2t
2 2 2
243
B A Sy 4+ B2}\4 + B3A252)
¥ {{x+ BSl)(A + Bs,) (A + s, + s,8))
4 3 22 3 3 2.2 12 3
A+ BA S + B A s152 + BA S, + BA s, + LR A s, + BA s,

(A + le)(A + Bsz)(A + sz)(k ts; + s28)

XZ(A S le 5 Bsz)

(A + le)(k + sz)(x + s, + 526)

This result may be partially verified by setting either of
the s's to zero; this yields the Laplace transform of a

single exponential ()A) distribution. Further, if B is set
to zero or one, the result is the Laplace transform of the

sum of two independent exponentials or an Erlang (2,1).
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B. CONDITIONAL EXPECTATIONS OF THE EMA1l SEQUENCE
The conditional means and variances are found in the

same manner as the EAR]l model, and only the results are

provided:
B = -1 +1-28 B —At(1-B)/B
E{x; ,[%x; = t} = A 7 (BAt Hg t1-g © )
- - 3~1 - o—At(1-8)/8
E{xilxi+l =tl=X2"(1+B-e )
Blx;, 2lx, = t} = 22721222 4+ (1228) ., 1-3g+28%+p°
Xj+1 1% i) 2 1-8 T (1-8) 2

¢ BU-8-8%) ~(1-p)ae/e
2
(1-8)
2 3
=2 (1+4B-B" _ 1+8-B” _-(1-B)At/B
1-8 1-8

E{x, = t} = 22

A

[

Xi+1

e M-

The conditional variances follow naturally, but none
of these expectations provides much assistance in the
estimation problem as each of the above expressions is

relatively insensitive to changes in B.

C. SERIAL DEPENDENCE AND CONDITIONAL CORRELATION IN THE
EMA1l MODEL

The conditional correlation shows some very interesting

properties of the EMAl process. In the EAR] it was shown
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that there is some dependence in every term of the sequence
with every other term. In the EMAl, the dependence is far

more limited. The x;_, term is, depending on the value of

1
the correlation coefficient, correlated with the x, and x,_,

terms, but on no others, and the X541 term is correlated

with the X5 and x. terms, but no others. However, the

i+2

Xx. term is correlated with both the x. and x. terms.
i i-1 i+l

Thus, in the EMAl process, there is no 'transitivity law'
with respect to serial correlations in that although each

b4 and X5 depend on Xir X and X;,, are independent.

»3 i-1l
In any event, unlike the ARl process, the EMAl is not

i=1

Markovian as E{xi+l|xixi_l} is not the same as E{xi+l|xi}.
The reason for this becomes obvious when considering the
basic construction of the model.

It appears, then, that a conditional correlation
involving Xs_ g7 X and xi+l might be of interest in
examining what this dependence is. Choosing one of the

three possibilities, then, of Corr{xi_l,xi+1|xi = t}

as a measure, we define this as pz(t),

= t} - E{X, = t}

;1% 1% 3-1 1% +11%s
{var(x, .|X, = t) Var(x,,.|x. = t)}%/?
S % L | i+1'7i

E{ = t}E{xi

02 (t) =

The covariance Cov{x. .X. |x. = t}, the numerator of the
=1 1+l 1

above expression, is sufficient for a cursory examination.

All but E{X, = t} has been previously calcul ted.

1—lxi+l|xi
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The triple Laplace transform of the joint p.d.f. of
xi-l'xi'xi+1 is found in a similar manner to the double

transform found earlier,

k. - Badle = S.XK.
v (51'52’53) = gle 1 i1 271 37i+1,
i-1,71"7i+l
“ S o e oo SR ) M
= e A e Ay kox,, (yopeXgexg)axgdxdxg
0 Ly T

The mixed partial derivatives with respect so s; and S,

are taken of this, and S, and s, are set to zero. This form
is then inverted with respect to S, and divided by the
marginal of X, - After subtraction of the product of the
conditional means, the conditional covariance remains,

BZ -(1-B) At/B

Cov{X. =t} = “1-F + {(1-B)xt-Ble

s-1%541 1%

-2(1-B)At/B
e

- B
1-8

Although non-zero, the values of the conditional correlation

are small and are of no apparent aid in the estimation of

the correlation coefficient.
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VI. THE KTH-ORDER EXPONENTIAL MOVING AVERAGE MODEL

The basis for the first-order moving average model of
the previous section was the solution for the form of the
distribution of components of the double infinite error
sequence in the autoregressive model. In that model, however,
as applied to the exponential case, the unweighted term in
the moving average is just exponential. This suggests
making it a moving average of two further e's, i.e., €541

and € . Using this iterative procedure we get a moving

i+2
average of any desired order.
In observing the form of the first few exponential

models, a very clear pattern of progression is noted:

EMAL X. = Be. probability B

Bei ¥ £ probability (1-g)

i+l

EMA2 X, = probability

By
probability (1-81)82

Bye; * BaEina

Bie; + BoEse1 T €i42 probability (1-81)(1—62)
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EMA3
By€y F Ba%ie1
Bi€i * Ba€i4y + B3eiyn
Bi€i * Ba€ipy * B3Eiyn

i+3

And so forth.

distributions.

probability B

probability

probability

probability

1
(1-8,) 8,
(1-8,) (1-8,) 85

(1-8;) (1-8,) (1-8,)

These may all be verified as forming probability

Moreover, the procedure is not specific to

exponential moving averages; all that is necessary is that

for given marginal distribution of the xi's, the €, sequence

be that form which provides a solution for the first order

autoregressive model.

Now, rather than looking at these as probabilities and

associated terms, they may be analysed as terms with

associated probabilities, that is, the Blsi term appears in

all models with probability 1.

Similarly the 82€i+

1

term

appears in all models (k > 2) with probability (1 - Bl),

etc.

final term.

The condition must be provided that a

Complete generalization fails only in describing the

coeffi-

cient is not present in the final (i.e., k+lst) term of

the model.
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The use of a series of random indicator functions, Ii(n),
permits the complete description of the model with complete
generality to all orders in a closed form. Thus, for

8% 1, cons Ky

1.8 - o, probability B

1, probability (1-8 ),

where i refers to the ith term of the nth independent
sequence of independent Bernoulli random variables. So,
Ii(n) ~ j.i.d. Bernoulli (1, probability l—Bn, 0 otherwise).
Define Ii(o) to be identically 1 and Bk+l to be identically
1 for all i.
Using this notation, the coefficient of the €5 term
(for the Xs element) is simply Bl. The second term is
(1) . (1)
Bin €417 the third 83Ii €i427 etc. In closed form,
then, the kth-order moving average process is given by
k J
(n)
x, = I B,.,,€:,. NI, ’
% j=0 j+l171+4] e
where i is the serial number of the ith element of the
series, k is the order of the process, and j and n are

indices. For example, expanding this for the xiEE element

for the EMA3, we get
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(1)

v,1, Mo (1), (2)

X; = Bp€y g1 ¥ Palgt B8 6442

x

+ 1. D @) )

X 1 3 i+2

The general form above can be established through mathemati-
cal induction with the expression for k = 3 and k = k above;

the expression for k = k+l is

I I () B )
s =0T Baitie ., 0 HET . + B £ . {] AR
: 5=0 o n=0 k+2"it+k+l n=0 1
k+1 3
(n)
= z B- e- . HI. -
juo JI*L714] g0t

The purpose in the creation of this model is to provide
models for data with longer dependence than that obtained
with the first-order model and to examine any tendencies of
the upper bound on the serial correlations to increase.

As mentioned earlier, using the standard formula for serial
correlation,
E{Xixi+j} - E{X;}E{X .}

Py = -,

J
Var{xi} Var{xi+j}

the only non-zero contributions to this correlation will be
a term in the joint expected value that is not present in
the product of the expected value of the marginals. 1In

terms of the model, this will occur only where there is a
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product of two identical error terms, e.g.,

= Lo e .
E{eiei+j} = E{ei}E{ei+j} = u°, j # 0, by the independence

1, 2 i
of {ei}, whereas E{€i+j€i+j} = yu“ + 0°, be definition, and

in the case where {ei} ~ Exponential (1),

= 2 _ ,, :
} = 2/0° = 2 E{ei}E{ei+j}. Therefore, if the
were to appear, its contribution to’ the

covariance would be C(u2 + 02) - Cu2 = C02, and the

contribution to the correlation would be Clz/kz = C. The

E{€i+j€i+j

term C€i+j€i+j

., however, would be zero.

contribution of Ce. €.
1 3+%3

Thus, for example, Py for the MA2 process is found as

follows:
x (1) (1) (2)
Xy = Byey BT 8yt TR €14
- (1) (1) (2)
Xip1 = B183 F BoTihr G422 YT Iis1 Bies

This gives

Py = 8182(1-81) + 82(1-81)(1-81)(1-82)-

From this example, it is easy to note the pattern for
the serial correlations. This pattern may be condensed
for all serial correlations of all orders of the exponential

moving average process as
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k-j+1  i-1 i+j-1
= I B, T (1-8 T (1-8), 1<3<k

) B,
i=1 n=0 S

°3,k
where k is the order, j is the degree of serial correlation
and i, n, m indices. For a moving-average model, pj - 0
’
for j > k.

Examining a few special cases,

o ! i-1 i+k-1
o =0 TR B (=B ). I (1-8_)
T D "
k
m=0
= 61(1—81)(1'62)"‘(1—Bk) ’
as Bk+l is defined to be 1.

with 0 < B8 < 1, this correlation is clearly limited to
0 < e X 1/4. This may be obtained by setting Bl to 1/2 and
all others to zero. For notational purposes, this maximum
is achieved with the beta k-tuple of (.5,0,0,...,0). Any
change in the values of the other beta values will cause a
decrease in the value of Prk*

The first serial correlation coefficients of the first

two orders are given by
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1-1+41  i-1 i+1-1
= I B, I (1-8 )8, I (1-8)
i=0 Lg=0 D il g W

61(1 e Bl) ’

as previously noted, and

2 =) i
P = » B, I (1-8 )8, I (1-8)
1,2 i=1 * n=0 n’ i+l g m
= 8,8,(1-8;) (< 1/4)

+ B, (1-8,) (1-8,) (1-8,) (< 1/4)

= B,(1-8,)}1 - B,(1-8,)]

Letting A = 82(1-81), then Py 2 = A(1l-a), with a maximum
’
of 1/4 at A = 1/2 = 82(1-81).
The second serial correlation coefficients of the
second and third order processes are given by
= B, (1-8,) (1-8,),

Pred Ol

which has a maximum value of 1/4 at B8 = (.5,0), and
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2 i-1 i+1
Py, 3 IRy B GBI T 116y

+ B, (1-81) (1-8,) (1-8,) (1-B;)

= B4{B, (1-8;) (1-8,)}

which may be regarded as a convex combination (or weighted
average) of the two terms in braces, the mikture being
determined by the value of 33. The term 83 is not present
in the terms in braces. The maximum value of each term in
braces is 1/4 (although not attained at the same time).
The maximum value for P2,3 is thus no greater than a weighted
average of 1/4 and 1/4, or 1/4. This technique will be used
to establish the maximum value of p for a number of classes
of serial correlations.

One such class of correlations is that of the (k-1)st

serial correlation,

k=-(k-1)+1 i-1 i+k-1-1

Px-1,x ~ P i
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i-1 i+k-2
lBi ngo(l-en)8i+k-l mgo (1-Bm)

|
IS LS

Pk-1,k "

Blsk(l—Bl)(l—Bz)---(l-Bk_l)

+ By (1-8) (1-81) (1-85) « -« (1=By ;) (1-By)

+ (l-Bk){Bz(l_Bl) (1—61) (1_82)--.(1-81{_1)}'
(k > 2)
which is also a convex combination of terms each of whose

maximum is 1/4. Another class of correlations is that of

the (k-2)nd serial correlation,

k=({k-2)+1 i-1 i+(k-2)-1
3 i=-1 i¥k=-3
= £ B; I (1-B)Bi,p, 0T (1-8), k>4
i=1 * n=0 m Citk=2 Lo m
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Ppez.k = BrByop (1-Bp) (1=8,) ... (1-8, )

= 8, _; 18, (1-8;) (1-B,) ... (1-8, _,)}
+ (1-8, 1) 8, {8, (1-B1) (1-B) (1-B,) ... (1-B; _5) )
+ (1-8, 1) (1-8,) (B5(1-8,) (1-8,) (1-8)) (1-B,) (1-8)
e (1B, ) 1.

As above, this is a convex combination of terms each of whose
maximum is 1/4. In this case, there are three terms, bat
the "weights" still sum to unity. Therefore, this class of
serial correlations is also bounded above by 1/4.

A somewhat broader class of serial correlations is that
where 2j > k+l. These correlations may also be specified
and a fixed upper bound obtained. Using the general expression
for correlations in the EMA model above, the individual

terms are
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P

j'k = Blel+j(l‘81)(1’82)..-(1-Bj)

+ 82(1_81)82+j(1_81)(1—82)---(1_Bj)(1-8j+1)

4+

83(1’81)(1-82)83+j(l-81)(1-62)0.-(1‘Bj+l)(l—Bj+2)

+ Bk-j (1-31) e (1-sk__j_l) sk(l-gl) s (1—33.) 2 (1—Bk_l)
+ sk_j+l(1—sl) G (1—ek_j) (1-31) e i (1-sj) P (l-sk_l) (1-Bk) F

With the added restriction imposed that 2j > k + 1, the

above may be factored into another convex combination form:
* (1—61+j)82+j{82(1—61)(1_82)-0-(1_Bj)}

* (1-61+j)(1_82+j)83+j{63(1-81)(1-82)--o(1-8j)}

4

(1-81+j)(1-82+j)(1-83+j)---(l’Bk_l)Bk{Bk_j(l—Bl)

“eo e (l_Bj) }
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Py o = (1-B1,.) (1-B

ik 5) (1B g) (1=Bgyg)eee (1=By ) (1B ) {By g, (17By)

e (l"Bj)}

This form also has a maximum value of 1/4, being the
combination of terms each of whose maximum is 1/4.

Analysis of the remaining serial correlations of the
various orders of the EMA models is more difficult. The
following observations are made about the remaining correla-
tions and a speculation with respect to the implications of
these observations follows. Briefly, it appears as though
the maximum serial correlation of any order for any of these
models is 1/4.

A. Each serial correlation of each exponential
moving average model contains k-j+1 terms, each being the
product of various elements of Bi and (l—Bi), (i%),2,.60K)

B. Each of the individual terms is non-negative,
bounded above by 1/4 and below by 0.

C. When any one term is maximized (i.e., the B
vector is adjusted to yield 1/4), the remaining terms are
each 0.

D. The sum of up to k-j terms can be shown to be
bounded by 1/4.

E. When terms are one-by-one maximized, the overall
serial correlation may be shown to be a local maximum.

wWith the above establishea, it is speculated that the

maximum value for any of the serial correlations is 1/4.
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This is borne out experimentally for EMA3 and EMA4. The
scheme indicated below shows how the k-j+1 maxima for each
correlation may be obtained. The general formula for
serial correlation in the EMA model, again, is

k-j+1 3= i+j-1

= z R | - o I - .
(DB A8, I (-8

P35,k

It should be noted in this formula that there are exactly
two beta elements in each term and that they are not the
same. Further, the Bi element, present in all terms, is
matched once and only once by a (l-Bi) element from the
second product. This is the sole restriction of the maximum
value on the individual term, as all other elements are
mentioned without their complements.

Using the above observations, it is clear to see that

each term is maximized in the following manner:

Bi = .5
Py * 8 "
Bi+l ™ Biyj-1= O
Bivy = 1

Bi+j+1 > Bk = (Arbitrary — not mentioned

in the term)
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Establishing this beta vector for the ith term will drive
the remaining terms to zero. The i+j-1 terms except the
ith each has a 8, element that has been set to zero. All
terms i+l through k-j+1 have a (1-8i+j) element which is
zero, owing to the first product in the general form, since
the i in this notation is at least one greater than the i
representing the ith term that has been maximized.

The following table summarizes the establishment of

the maximum serial correlations (each maximum is 1/4).
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Serial Correlations

1 X
2 X X
EMA 3 E X X
Order 4 E E X X
5 S S S X X
6 S S S X X X
7 S S S X X X X
8 S S S S X X X X
9 S S S S X X X X X
10 S S S S S X X X X
X = An exact analytic solution obtained for maximum
correlation
E - Demonstrated experimentally
S - Speculated
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APPENDIX

SIMULATIONS

INTRODUCTION

Chapter 4 addresses the question of estimating the
correlation parameter in the EAR1l model. Due to the
symmetric nature of the expected correlation, the conven-
tional method of estimating the serial correlation is less
than adequate. The following simulations apply the procedure
outlined in Chapter 4.

The simulations were performed in APL/360 at the Computer
Center at the Naval Postgraduate School. A brief description

of the functions used follows.

PROCEDURE
Three simulations were made of the test procedure
outlined in Chapter 4. The generated samples each contained
500 EAR1 sequences with mean 1. The first two were generated
with a correlation coefficient of .1 and the third with
one of .05. Sequence lengths are 10, 5, and 20, respectively.
In each case, a new set of random variables is formed
as zi = xi+1/xi. The minimum of these from each sequence
is recorded and the remainder discarded. The probability
that this minimum estimates the correlation coefficient

"exactly" is given in Chapter 4, and only the distribution

of the non-exact estimates are of real interest in the
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simulation. The "exact" estimates are therefore censored,
and the remaining sample examined for exponential tendencies.

Moments of these samples are calculated and the values
are plotted as an empirical log survivor curve (Cox & Lewis,
1966) . The plotted curves are very nearly linear which is
indicative of an underlying exponential distribution.
Johnson & Kotz (1970) give as maximum likelihood estimates
for the two parameters of a two-parameter exponential,

8 = Min (xi) and 0 = X - 8. The results are summarized
in the table below.

No further tests were conducted on these simulations;
however, a fourth simulation was made by generating 500
random exponential deviates with mean of .l. These were
censored at the .l point and were examined as above. The
results are nearly identical to the first simulation, adding
credibility to the speculation that the distribution of

the minimums is the two parameter exponential (n,p).
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EAR]l Simulation Summary

Simulation number

Sample size

Number of terms in
each EAR1l sequence

Marginal exponential
parameter

Correlation coefficient
Censored sample size
Sample mean

Censoring point

Minimum value (= 0)

ML Estimate of o (= X-8)
Hypothesized value of

0 (=1/number in
sequence)

500

10

.1
201
w192
el
o |
.092
el

64

i

500

i
306
.307
ol
|

«207

EET

400

20

.05
159

. |
.05
.05
.05
.05

IV

500

201
.203
ol
% I
.103
(.1)



USER-DEFINED APL FUNCTIONS

The following functions were employed in the simulations
conducted, and listed at the end of the output.

A. n EXVAR 1 - Exponential random number generator.
n is the desired sample size of parameter 1 exponentials.

B. n BERN k - Bernoulli random number generator. 1n
is the desired sample size of random variates of parameter k.

C. n AR1lll parm - EAR]1 random sequence generator. n
is the desired number of random sequences with parameters

parm. parm is a three-element vector of parameters where

parm(l) is the parameter for the marginal exponential,

parm(2) is the number of terms in the sequence, and parm(3)

is the correlation coefficient used to generate the sequence.
D. ZQUOT m - Takes a matrix consisting of a series

of sequences and returns a matrix such that zi,j = xi+l,j/xi,j'
E. LOGSURV n - Generates a vector of length n

for use as an axis in plotting the log survivor function.

Computes z = log {1-(i/n+1)} for a vector.

The remaining functions used are standard APL/360 library

functions and primatives.
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