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ABSTRACT

An alternative to the normal model in time series

analysis is presented wherein the sequence of random

variables have exponential and mixed-exponential marginal

distributions. The moving-average and autoregressive

models are analysed with respect to serial correlations

and conditional expectations. The mixed-exponential

autoregressive model and the mixed autoregressive-moving-

average model with exponential marginals are presented.

A method of estimating the serial correlation coefficient

is examined, and digital computer simulations of several

of the models are given.
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I. INTRODUCTION
B

Gaver and Lewis (1975) have described a first-order

autoregressive stationary sequence of random variables

having exponentially distributed marginal distributions,

and have given extensions to Gamma distributed processes.

Lawrance and Lewis (1975) have described similar models

for the moving-average process. Motivation for these models

includes finding an alternative to the normal theory of

time series analysis, and developing a model with correlated

random variables with non-normal marginals.
o

Several extensions of these models are also of interest,

» including a mixed-exponential autoregressive process, a

second-order moving-average process, the kth-order moving-

average process, and the mixed autoregressive moving-average

process and the estimation of the parameters concerned.

This thesis is concerned with detailing the properties of

some of these extensions.

Digital computer simulation of these models is also of

interest, particularly in the estimation of parameters.



II. THE EXPONENTIAL AUTOREGRESSIVE MODEL (EARl)
*»

A basic stochastic model often useful in representing
.

time series is the first-order autoregressive model. Unlike

the moving-average process, discussed later, the current

value of the first-order autoregressive process is a linear

combination of the previous value of the process and an

independent error term. Although similar in appearance to

the moving-average model in that it, too, is a linear com-

bination of random variables, a principle difference is that

each value of the EARl sequence, regardless of order, is

correlated (depending on the correlation coefficient) to

every previous value. It can be written as an infinite

moving-average over the sequence of l.l.d. error terms.

The general form of the kth-order autoregressive model

is

Xi = plXi-k + P2xi-k+l + '•• + pk-lXi

Only the first-order process will be considered here

as it has great potential for describing actual series, and

higher-order processes, with the conditions that will be

imposed, are difficult to analyse. The first-order process,

then, is



xi = pxi-l + ei

-

If the e. are normally distributed random variables, the

x. are a normal sequence, and this is the case which is

explicitly or implicitly considered in the literature

(see e.g., Anderson, 1971; Box & Jenkins, 1970). In this

thesis the condition will be imposed that the {x.} will be

a stationary sequence having a marginal distribution that

is exponential with parameter A. A sufficient condition for

such an AR sequence to be stationary is that |p| < 1

(Box & Jenkins, 1970).

The determination of the error term e. is relatively

simple (Gaver & Lewis, 1975). Beginning with the basic

AR1 equation, and assuming that the x. sequence is stationary/

xi = pxi-l

and taking the Laplace transforms

-sx. -spx. , -se
E{e x) = E{e

-spx. , -se
= E{e 1"1

by the independence of (e., x.,). Therefore,



-sx.

A (s) = E{e~' M = E{e Le. -spx.
E{e i

Now the distribution of {x.} is defined to be exponential

(X) , i.e.,

-sx.
E{e l

X + s

Therefore

x.i X + s

i-1 X + ps

ps

It is simple to see that this is in fact the Laplace trans-

form of a positive random variable, by inverting with

respect to s; for 0 < p < 1

e. = 0, probability p II.2.

el, probability (1-p),

where e! is an exponential random variable with parameter X,

Therefore



x. = px._, , probability p II.3

px._, + e! probability (1-p).
»

It is simple to see that it is not possible to allow p to

be hegative; since x.. is by definition positive and with

px- negative it is heuristically clear that it is impossible

to find an independent e. which makes x. positive.

Owing to the nature of the model it will be seen that,

unlike a mov-ng average process, there is a partial corre-

lation of all orders. In examining the joint distribution

of x. and x._,, it is easier to analyse the joint Laplace

transform. Thus

xi = pxi-l

- P2:

and

x. , = px. _ + e. ,.i-l i-2 i-l

Therefore

2
-s x. - s x . -s (p x. - + pe. , + e. )-s? (px. ?+e. ,) ,

* 2 2 x 2

1 -i J9 n 1

E{e -1 1 X -1} = E{e

, 2 x ,**• I i\! ~r ^ ̂  1 V ••• I ii*5 "i R fl F *\ i M o * " o \ i " 'x n

= E{e 1~ }E{e 1~-L}E{e

10



by the independence of x._2, £•_-,/ £•

By definition

-sx.
E{e

and by derivation

so that

-s x -s-x. , . X+p(ps,+s ) X+ps
£{e 1 i 2 i 1} = X 1 2

2
X+p

X(X+ps,)

(X+ps1+s2)

One aspect of this equation is that if we set s, = s2 = s

we get the Laplace transform of x. + x. , , and it is noti i*~ J.

Gamma (2) because of the dependence between x. and x._,.

It is Gamma (2) if p = 0, however. If either s, or s2 is

set to zero we get the marginal exponential distributions

of x. and x._,, but the transform is not symmetrical in s,

and s2 .

The first and second moments of x. and x._, can be

obtained by taking the first and second partial derivatives

with respect to each variable, and they are found to be the

11



same as expected for a marginal exponential distribution,

i.e., E{x±] = E{xi_1> = I/A; Ê 2} = E{xi_12} = 2/A2.

2
The variance is then I/A .

- All that remains to finding the correlation is to find

the expected value of the joint distribution. We have

x
x

'13S2 s =0+;s_=0+.

- P +
A2

Thus, since

Cov (x±x )
1 1 1

and

Cov(x.x. )
Corr (x.x̂ ^ = =— = p,

Var(x.)Var(x. )

Note that the first-order serial correlation is bounded by

0 and 1 so that the EARl model in some respects is a more

versatile model than the EMAl model discussed later. For

the EMAl model the correlation is positive and bounded

above by 1/4.

The other serial correlations may be found in a similar

way. All that need be computed is the joint expected value

12



of the lagged values of {x}. For example, p~ may be deter-

mined by finding E{x.x._2> and replacing it in the above

formula, although it is known from the theory of Markov
}-

processes that p, = p . It can be shown without much

difficulty that

-s x. - s x. , X(\ p s,)1 i 2 i-k 1

(X + pK« + s) (X

so that

k
<• / = P _±.

^

and hence that

= pk, (k = 0, 1, 2,

as surmised above.

Nothing has been said about about conditions for

stationarity in the EAR1 sequence. It is simple to check,

however, that if the sequence starts with x = as an ^

exponentially distributed random variable, and then con-

tinues as defined by II.1 for i = 1, 2, ... with the

error sequence II.2, then the x. sequence is stationary.

A. CONDITIONAL EXPECTATIONS OF THE EARl SEQUENCE

The conditional means and variances of pairs of random

variables in the sequence {x-} may be examined for comparison

13



with those of other bivariate exonential distributions and

as a potential method for evaluating the sample coefficient»

of correlation.

In any process, the conditional expectation (mean) of

the x. , term, given the ith is

x = t} = 3 C - f ( x - l t ) dxi+l

CO

f VJ J» J

-co

The joint distribution of x. and x. , is not available in

a simple form. The joint Laplace transform of this joint

distribution has, however, already been established (II.4)

* E

Therefore, if the first partial derrivative with respect

to the second variable of the joint Laplace is taken,

"~S-X.""S « X . -.

-x e 1 1 2 1+1f (xx ) dx dx
xi+le fxx l xi xi+l ) xiaxi+l

and then s2 set to 0+, we have

14



1
3s

-S,X.
x dx.dx

2 ,2-

and it will be found to be the same form as the negative

of the Laplace transform of the numerator of the conditional

expectation, E{x. .. jx. = t}, identified on the previous

page, viz.,

numerator x±+1f (x̂ x̂ ) dxi+1

oo -S..X.

Laplace transform = //x. .e 1f (x.x. .) dx.dx. ..
— l+J. X • X_. , , 1 1+J_ 1 1+X

Therefore, applying this procedure to the Laplace of the

joint distribution $, to find E{x. , x. = t}, first

differentiate with respect to s~r then set s2 to zero,

invert with respect to s.. , multiply by minus one, and

finally divide by the marginal distribution of x. for the

desired result.

Applying this to the EARl model yields the following,

Nearly the same scheme may be used to find the 'backward'

conditional expectation, E{x.|x. . = t}. The procedure here

15



is to take the partial with respect to the first variable,

set s, to zero, invert with respect to s~r multiply by

minus one, and divide by the marginal of x.+,. This yields
-

the following for the EARl,

E{xi|xi+1 = t} = x"1{pXt + (1-p)}

Other conditional expectations may also be found in a

similar manner. The conditional expectation of any function

f: R__ •»• E given X, is (Zehna, 1970)

(X2|x1)

/ ¥(x2)f
— CO

Again, the Laplace transform of the joint distribution is

available

~S -i X i S n X . . -,

E{e x x 2 1+1}

~ -S X - S X

ffe x 1 * x x f (x.x.^n) dx.dx
0 xi

The second partial derivative of $ with respect to

is

16



°° 0 -S..X. - s_x.,,_ ff 2 1 i 2 i+l f , . - d
2 •/-/Xi+l x x * i + l ' i i+1'
2 0 xix ' 1+

And setting s2 to zero yields

Os2)2

9 1 '

e fx x (xixi+l} dxidxi+l
XiXi+l X 1+1

This, of course, is identical to the Laplace transform of
2 -s,x.

the numerator of E{x. .|x.} with respect to x., E{e 1}.

Applying this procedure in a manner similar to that for

finding the conditional means, to find the conditional

second moment of x. , given x.: i) take the second partial

derivative of 3> with respect to the second variable (s2) ;

ii) set s2 = 0+; iii) invert with respect to s,; iv) divide

by the marginal of x.. As with the conditional mean, the

procedure for finding the conditional second moment in the
2

'backward1 sense, E{x.|x..,}, is the same with the first

and second variables being reversed.

For the EAR1 process, then, the two additional second

moments are

E{x2i+1|x. - t> - 2A-2 -
u-Pr

17



and

E{xjJxi+l = t} = t2(2P2-P> + 4tx

These conditional moments (and the variance which follow

directly) present a contrast to those of the MAI process

(presented later) in which all forms are exponential. Also,

allowing p to approach zero or one produces different results,

namely that as p approaches one (i.e., completely correlated

events) the distribution becomes degenerate and all members

of the sequence are identical to the first. If p goes to

zero, it becomes an ordinary Poisson process. Both ideas

are summarized in the table below. A partial check on the

accuracy of the above is made by first multiplying by the

conditioning marginal and then integrating. The result is

found to be the remaining marginal's expected value.

Term Lim {term} Lim {term}
p-»-0 p-*l

E{xi+1|xi = t} 1/X t

E{xi|xi+1 = t} 1/X t

xi = t} 2/X2 t2

E{x2|xi+1 = t} 2/X2 t2

18



An important property of Markov sequences is that while

the correlation between variates k apart is non-zero out to

infinity, the correlation between x. and x. , , given any
3. JL"t~JC

value of x. between x. and x.,, i.e. i < j < i+k is zero.i ~

The zero partial correlation is a means of identifying a

Markov sequence.

19



III. FIRST ORDER AUTOREGRESSIVE MIXED EXPONENTIAL PROCESS

In this section, the basic autoregressive model will

be used, but rather than demanding the marginal distribution

of the {x.} sequence be a simple exponential (A), a marginal

distribution of the three-parameter mixed exponential

(A, / \~> TT) will be imposed. It will be shown that for

certain values of A,, A~ and IT, an e. sequence exists

which gives this marginal distribution.

This model is far more versatile with respect to

fitting observed distributions, particularly very skewed

ones. With suitable choices of the parameters, distributions

having any desired mean and coefficient of variation between

1 and «> may be produced (Cox, 1962) .

Using the autoregressive scheme mentioned earlier,

x = px. , + e., 0 < p < 1, (i = 0, 1, 2, ...)x i—j. i —

and taking the appropriate Laplace transforms,

xi

-sx. -px._1s - e.s
(s) = E{e x} = E{e X

-px, -,s -e.s
E{e 1 L e x

-px. s -e.s
= E{e -1 1 }E{e x

., x._. independent.

20



Therefore

(s) = E{e i } = i-

i-l
(ps)

The probability density function of the three parameter

mixed exponential is

-X..X -X_x
f(x) = irXj^e L + (l-7r)X2e

The Laplace transform of this, and hence the transform of

the imposed ma ginal distribution for the x.'s will be

irX. (l-ir)X

X.X2 + X s + (1-ir) X

(X-j^ + s) (X2 + s)

Similarly, the transform of px._, will be

X,X_ + trX ps + (l-ir)X_ps
(ps) =

i-l (X1 + ps) (X2 + ps)

Then

21



4>x (s)
4, (S) = —i
£i 4>v (ps)

X,X 2

Let

s) (\ s)

X.. X» + TrX, ps + A^ps - irX ps

(X + ps) (X + ps)

(X- +ps ) (X 2 + ps) (X1X + irX s + X2s -irX 2s)

( X + s) (X2 + s) (X X_ + t rX- jps + X2ps -nX ps)

ps) (X2 + ps)

s) (X + s) (^

+ ps) (X, + ps) (s + TrX +\) (X2 + s) (ps + X1X2

irX,

A - ^ o i
1 * X

irX,

Consider C as a function of ir. At IT = 1, C = X_, and at

ir = 0, C = X, . The derivative of the denominator is

X, - X2/ so that the denominator increases from X2 to X

22



monotonically as IT goes from 0 to 1 if A, > A_. Therefore

C decreases monotonically from A, to A2 as TT goes from 0

to 1, and also A- £ C £ A, and C > 0. By extension

A, <_ C <_ A~ or A2 <_ C £ A, , depending on which of the

parameters A.., A,, is larger,

Then

(\ + ps) (A2 +p s) (s + C)

<J)ei(s) (\ + s) (A2 + s) (C + ps)

(ps + Ax) (ps + A2) ( +

(A.,̂  + s) (A2 + s) ( + s)

p + (1-p) (i

2 2
A +ps

(A.,̂  + s) (A2 + s) (̂  + s)

This is not necessarily the Laplace transform of a distribu-

tion function; it is shown that this is the Laplace transform

of a distribution function for certain values of the three

parameters by explicitly inverting it. Churchill (1970)

summarizes Heavside's equations in stating

If f(s) is the quotient p(s)/q(s) of two

polynomials such that q(s) has the higher

degree and contains the factor s-a, which

is not repeated, then the term in F(t)

23



corresponding to that factor can be written

in either of these two forms:

or
q1 (a)

where $(a) is the quotient of p(a) divided

by the product of all factors of q(s) except

s-a. This Theorem is valid when the constant

a_ is any complex number.

Therefore, taking the inverse Laplace transform, term by

term, using Heavside's equations and writing it as a proba

bilistic mixture yields, if \^ ̂  \/ eX2 ̂  C or p\ ? C,

(term 1) with probability p, e. = 0

with probability (1-p), e- has density

C C C C C C C C
1 /-ij. / ~~~XT XT~ X T A •>"!"•"—XT~**~—A-i~f~CAi Xo~C

) i—) e~ Ct'p p l 2 p l 2 p p 2 p p l 12 pp
P C C

T -x,t -x, x, x0-pX-, X, x9+px, X-, x0+px, x, X T + C X , x0-cx , x,
(term 3) + (-) e L — LJ^A - L-LJ: - L_LJ - LJ^J; - L_£ - L-i.

(X2 - X,) ( - X2)

i ~~X^t — X _ X, Xo~p Xj X-, Xo~i"p X> X^ X^ + p X« X« X-i +CX-,
(term 4) +(i)e 2 — 2^_Z - 2_J^J - 2_J_J - 2_J_1 - 1

P c

Ul ' V (^ X2 }

24



This may be rewritten as

e. =0, probability p;

Otherwise the density is

-Ct/p (C - X1)(C - X2)p

- c)(c - PXO;

"Xlt (C - X ) (pX - X )
+ A, e

(X1 - X2) (C - pX^

~X2t (C - X )(pX - X )
+ X9e = —, probability (1-p) ,

(X - X )(pX - C)

where

c.
+ (1 - TT)

X ,X_ > 0, 0 <_ -n <_ I, 0 < _ p <1, with points of singularity

at pX, = C, pX = C, X2 = X .

Again, we are assuming that we have a density -function

i.e., that the function is positive and its integral equal

to one.

25



For the case pX-, = C,

£i - o, probability p

= e
-x2t

(X2 -
, probability (1-p).

For the case pX2 =

e± - 0,

= e

probability p

- X2)

p(X1 - X2) (X2
, probability (1-p)

For the case X-, = X~ / the necessary conditions for Heavside's

equation are not met, and the inverse must be taken after

equating X, to X-. Recalling from above,

(X, + ps) ps) TTX..S

(X, + s) s) (X-,A2 + 7rX,ps

Setting X, 2 ~

(X + ps) (X + ps) (X + -rrXs + Xs -
r*\)

(X + s) (X + s) (X + irXps + Xps - irXps)

_ X + ps

X + s

26



Finally inverting with respect to s,

e. = 0, probability p

-AtXe , probability (1-p).

Which is, naturally, the same as that for demanding {x.}

be distributed exponential, parameter X, or that TT = 0, 1.

The inverse transform, a function of t, may be verified as

being a probability density function by showing that it

i) integrates over the domain to unity, and ii) it is

non-negative over the domain. Establishing the first

condition,

/ e. dt = p + (1-p) / e
0 0 (pX-j^ - C) (PX2 - C)

a -x,t x, (c - x,) (Px, -
+ (1-p) / e

0 (Xx - X2) (C -

co -X,t X,(C - X,) (pX, - X,)
+ (1-p) / e Z -+ - 2 - 2 - L. dt

o (x - x2) (px - c)

-(C - X,) (C - X0) (C - X,) (pX, - X0)
= p + (1-p) — 2 2

- c)(Px2 - o (xx - x2)(c -

(C - X~) (pX? - X,)

- x2)(pX2 - c)

27



00

/ e± dt = p + (1-p) [(C-^) (C-X2) (X1-X2) + (C-X1) (PX1 -X2 ) (PX2-C)

(c-x2) (Px2-x1) (c-pX- j^ ) ] v (X1-x2) (c-x1) (px2-o

= p + (1-p) (-CpX1X2-CCpX2+pX1X1X2+CpXLX2+CppX1X2

ccx2-ppx.

CppX.. X_-CpX 2 X 2 +CX 1 X 2 ~pX X X2 ..

- x2) (c - px^ (Px2 - o

(Xn - A ) (C - pXn) (pX0 - C)
p + (i_p) _1 2 i i

(Xn - A,)(C - pAn)(pX0 - C)
X ^ JL- w

— T

The non-negativity conditions are not as readily established,

Analysis is facilitated by forming the following cases:

Case 1 : pX2 > C

Case 2 : pX2 < C

Case A : pX2 > X.

Case B : pX_ < X,

28



With the previously stated conditions, A.., A 2 > 0 , 0 _ < p < l /

and \. < C < A_, it is clear that case 1A, 2A, and 2B are
JL ~~* *~ -̂

of concern and IB is not well-defined.

Beginning with case 2B (pA2 < C and pX_ < X,)/ it is

clear that each of the coefficients of the exponential terms

is non-negative and hence, over that parameter range, the

function is non-negative.

For case 2A, the first and second terms are non-negative

and the third non-positive. If the exponent of the second

term is reduced from -A..t to -Ct/p this will decrease the

value of the positive term. Similarly, if the exponent of

the third term is increased from -A2t to -Ct/p, the value

of this negative term will be decreased. Thus, the resulting

function will everywhere be of lesser or equal value to

the original form. In terms of equations,

C(C - A ) (C - A.) X (C- A ) (pA - A )
_e. > e! = e

(C - pA-j^) (pA2 - C) (A-L - A2) (C -

A2(C - A2)(PA2 -

(pA2 - C)

29



ei - el = e~Ct/P (c(c-x1 ) (c-x2 ) (X1 -x2 )+x1 (c-x1 ) (pX1 -x2 ) (px2 -o

X2(c-x2)(Px2-x1)(c-

- X 2 ) ( P X 2 - C) (C - pX ] _)

-Ct/p ( X2 " Xl} (C " PV (C ~ ?Xl} ( A2 + Xl ~ C)

(\ - x2)(Px2 - c)(c - pxx)

= e"Ct/p (X + \ C) > 0

The fourth case, pX^ > C, cannot explicitly be demonstrated

to be everywhere non-negative, although it is so at t = 0

and as t approaches infinity. Even without considering this

case, the model has great versatility, particularly with

small values of p.

30



IV. ESTIMATION OF p FOR THE EXPONENTIAL

FIRST-ORDER AUTOREGRESSIVE MODEL

Using the exponential AR1 model defined above,

.. - Exp (A) i = 0, 1, 2, ...

xi = pxi-i + e!

j=0

where e! is 0 with probability p, and exponential X with

probability (1-p). Now if a new random variable is defined

as

x.
•7 = 1 — 1 9*••• J L ± . f £ • / * • *

then,

x. + e! e1.
z. = _—_^^__ = p +
i

Again, if the x.'s are distributed Exp (A),

z. = p + —-— , probability (1-p)

probability p

31



Clearly, if the sample is large enough and/or p is large

enough, some of the z.'s will "estimate" p "exactly."

Now in a sequential estimation situation one only has

to observe the minimum of successive z.'s, and as soon as

a match is observed between a current value of z. and the

minimum of the previous z.'s, that value is exactly p. The

time to the first occurrence of the value p in the sequence

z- is geometric with parameter p and the time to the second

match, say M, is the sum of two independent geometric

random variables. This is a negative binomial random

variable and E(M) = 2/p.

It is also clear that once p is known it is possible

to unravel the e! error sequence, and there will be M-2

(a random number) of exponential variates from which to

estimate the exponential parameter X. This can be done in

the usual way, and more observations can be taken to achieve

any desired precision in the estimate of X.

For fixed times of observation, say from xfi to x.,

giving n observed values of z., there are three possibilities:

(1) A match occurs in determining the minimum z.

sequence, so that p is known exactly, as above. The probability

of this is 1 - (l-p)n - np1(l-p)n , which will be very

close to one for p ~ 0.5 and n large.

(2) Either a) for exactly one i, x. = px._,

(probability np(l-p) ) or

32



b) for no i do we have x. = px._1

(probability (l-p)n).

In the second case it seems fairly clear that a reason-

able estimator of p, with a positive bias, will be min (z.)

Note that the ratio e!/x. 1 has an F-distribution,

F0 ~e where
« »«

F

n m+n
m 2

Since the ratio is independent of X, so will any estimator

of p based on the z.'s.

It is possible to get an exact estimator of p, with

known bias term, by averaging the z- *s. The variance is of

order 1/n, whereas it is conjectured that the variance of

the estimator based on the minimum of the z.'s is of order

1/n2.

Some simulation studies of the (min z.) estimator are

given in the Appendix. The simulations tend to substantiate

the speculation that the distribution of the minimum (z.)

(when it is not an "exact" match of p) is exponential

(p,n) , the two parameter exponential distribution with

mean = p + 1/n and minimum value p. (Johnson & Kotz, 1970) .

It would thus appear that
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Min (z.) = p , probability 1 - (l-p)n - np(l-p)n

Exp (p/n) , probability (1-p) + np(l-p)

The expected value of this is

E(min(Zi)) = E(p) = (1- (1-p) n-np (1-

+ npd-p)11"1) (p+l/n)

with a lower bound of p.
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V. FIRST-ORDER EXPONENTIAL MOVING AVERAGE PROCESS

The general moving average model of time series analysis

(see e.g. Box & Jenkins, 1970) may be described as a

sequence of random variables formed as the weighted average

of a number of previous observations. It should be noted

that it is not a true "average" in that the weighting

coefficients do not sum to unity (or any other specified

number) .

Xi =

(-1 < ei <

This is one of the two simplest forms of times series

models (the other being the autoregressive model, discussed

previously) , and hence is relatively straightforward in

terms of calculations and correspondingly limited in terms

of describing natural phenomena. As the number of terms

in the sequence is finite, the sequence may be shown to

be stationary (Box & Jenkins, 1970) .

Considering, at first, the first-order forward moving

average process,

Xi = Pei + ei-fl (i = 0, ±1. ±2. . . . ; -1 < 3 < 1)
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it is clear that there is first-order dependence, but

nothing further (i.e., x. may be correlated to x. ,, depending

on the correlation parameter, but not to x._2). This first

order dependence is different from the Markovian ARl model,

where x. and x._2 are conditionally independent. The model

is described as "forward" to distinguish it from the

"backward" process,

Xi =

whose properties are similar. Note that if the i.i.d.

sequence {e. } is normally distributed, x. will be normally

distributed as well.

If the condition is imposed that the marginal distri-

bution of the x.'s be exponential parameter A, the EARl

model shows that we may construct a first-order moving

average as

x. = 3e- , probability 3

3e. + e - . T f probability (1-3)

Verifying that the distribution of {x.} is Exponential (A),

the Laplace transform of the distribution is evaluated

as
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L{f (X.)} = f* (S)
xi 1 xi

-sx.
E{e 1

-s3e -sBe. - se
E{e 1}B + E{e

-see. -sBe.
E{e x}0 + E(e 1}E(e

by the independence of the terms of {e. }. Thus, for any

f*
xi X + s (X + s3) (s + A)

X + s

= L(Xe t}, Q.E.D.

The first serial correlation p1 is defined in the

conventional manner:

pl
Var{xi}Var{xi+1>

The expected value of the joint distribution of {x.x.+,}

may be found in a number of ways. Two of these are i) to

examine the form produced by the product and ii) to find
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the first mixed partial derivative of the double Laplace

transform of the joint distribution evaluated at s = 0+.

Both techniques will be used here as the results will be

useful later.

We have

x. = Be./

3e. + e.+l

probability 3

probability (1-3)

and

probability 3

$e.+1 + ei+2 probability (1-3)

The product, then, is

ixi+l = eiei+l'

3ei(3ei+1 + ei+2) ,

(3ei + e

probability 3

probability 3(1-3)

probability (1-3)3

± + ei+1)(Bei+1 + e±+2) , probability (1-3)
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3eiei+2}

2
Defining y = E{e.}, and a = Var{e-}» then, by stationarity,

y = E{ei+1> and a2 = Var{ei+1}. Now,

E{eiei+j} = E U i ^ U } = y / j ^ 0, by the independence
2 2of the terms of {e i> / whereas E ^ e e } = y + CF , by

definition. With this in mind,

3(1-3) (32y2 + 3y2)

d-3)3(32y2 + 3(y2 + a2))

(l-3)2(32y2 +3y2 + 3(y2 + a2) + y2)

(1-3) a2 + y2.

Therefore,

Pi =
Var{xi}Var{xi+1>
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3 (1-3) a2 + y2 - y2
PI

a2o2

= 3(1-3)

It should be noted that {e.} is distributed exponential

parameter A, so that a = y = l/^/ and this could have
i ei

been substituted earlier. This substitution will be useful

in considering higher-order moving- average processes. The

correlation p.. is the most limiting aspect of the model as

the correlation of the x.'s is strictly non-negative and

bounded above by 1/4, as compared with the conventional

(i.e., normal) MAI model where -1/2 _<_ p, _<_ 1/2. A second

problem associated with this EMAl model is the symmetry

of the functional form about 3 = 1/2. For purposes of

estimation, differentiation between a coefficient 3 of,

say, .15 and .85 will be impossible if estimat on is based

on p, . As will be shown later, higher-order EMA models are

similarly limited. By the nature of the model, all higher-

order correlations in the EMAl model are zero.

A. LAPLACE TRANSFORM OF THE JOINT INTEKVALS IN THE
EXPONENTIAL MOVING AVERAGE MODEL

The basic model is still

xi = ^ei ' probability 3 (0 <_ B £ 1,

^ei + ei+l' probability (1-3) i=0f±1,±2,...)
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and the product random variable is

probability

n2

Taking the doi±ile Laplace transform, we have

-s,x. - s x
) = E{e X x 2

2

-s,6e. -

-s,6e. - s (3e. + 6)
6d-6)E{e X 1 2

-s (6e. + e. ,)
(l-6)6E{e 1

-s (6e. + e.,,) - s9(6e. , + e )
(l-B)2E{e 1 2
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2 ~ i e i
(S1'S2} = & E{e

X 2

~s,3e. - Sn3ej,-i s2e
3(l-3)E{e I 1 2 2

fVei ' (S1 + S2e)ei+l}

9 -s,Be. - (s, + s93)e. i - s e. -
(l-3)2E{e 1 x 2 2 1+2}

2 ~s,$e..
B2E{e X 1}E{e

-s 3e. ~s2&ei+l ~s2e
-1 1}E{e Z 1 1}E{e 4

(s,

i "(si+s23)ei+l ~S2e
1}E{e 1+1

by the independence of {e.}. With e. ~ exponential (A)/

(c a \ c T ^ 1 F——^——1
TV v \ - i f D - 5 / P ' ' ' i 4 - D e : J ' \ 4 - O Q
X • ̂ • , -i J. Z A P13! A P&O
1 1 + J. 1 <£
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A (s. ,s,) = (32X4 + 32X3s, + 33X3s, + 32X3s, + gVs.s.
i i+1

,

+ 33X2s22 + 3X4 + 3X3S;L + 32X3s2 - B2X4 - 32X3S;L + S3X3

+ 3X4 + 32X3s2 + 3X3s2 + 32X2s22 - 32X4 - 33X3s2 - 32X3

- 33X2s22 + X4 + 3X3s2 - 3X4 - 32X3s2 - 3X4

- 32X3s, .2.4 3.2 .2 + 3 A 3 X S)

* ((X + 3s1) (X + 3s2) (X + sl + s23))

X4 + 3X3s1 + 32X2s1s2 + 3X3s1

(X + BS^ (X + 3s2) (X + s2) (X + s1 + s23)

A2(X

(X + Bs]_) (X + s2) (X + s1 + s23)

This result may be partially verified by setting either of

the s's to zero; this yields the Laplace transform of a

single exponential (X) distribution. Further, if 3 is set

to zero or one, the result is the Laplace transform of the

sum of two independent exponentials or an Erlang (2,X).

43



B. CONDITIONAL EXPECTATIONS OF THE EMA1 SEQUENCE

The conditional means and variances are found in the

same manner as the EARl model, and only the results are

provided:

. = t> -

E<x..2|x. = t} - 2 A - A t + ^ . At +. + . . .
' (1-3)

+ g(l-B-32) e- (1-3) At/3

(1-3) 2

- U - 2X-2
1-3 1-3

At -(1-3)At/3'

The conditional variances follow naturally, but none

of these expectations provides much assistance in the

estimation problem as each of the above expressions is

relatively insensitive to changes in 3-

C. SERIAL DEPENDENCE AND CONDITIONAL CORRELATION IN THE
EMA1 MODEL

The conditional correlation shows some very interesting

properties of the EMA1 process. In the EARl it was shown
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that there is some dependence in every term of the sequence

with every other term. In the EMAl, the dependence is far

more limited. The x._, term is, depending on the value of

the correlation coefficient, correlated with the x. and x._«

terms, but on no others, and the x. , term is correlated

with the x. and x. _ terms, but no others. However, the

x. term is correlated with both the x._, and x. , terms.

Thus, in the EMAl process, there is no "transitivity law1

with respect to serial correlations in that although each

x. , and x. , depend on x. , x._, and x. , are independent.

In any event, unlike the ARl process, the EMAl is not

Markovian as E{x...|x.x._,} is not the same as E{x. ,|x-}.

The reason for this becomes obvious when considering the

basic construction of the model.

It appears, then, that a conditional correlation

involving x._,, x., and x. , might be of interest in

examining what this dependence is. Choosing one of the

three possibilities, then, of Corr{x._,,x. , |x. = t}

as a measure, we define this as p2(t),

- _1|Xi = t}E{Xi+1|X. = t}
p (t) = - :

{Var(Xi_1|Xi = t) Var(Xi+1|X.. = t)}

The covariance Cov{x._,x. . |x. = t}, the numerator of the

above expression, is sufficient for a cursory examination.

All but E{X._,X.+1 |x. = t} has been previously calcul ted.
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The triple Laplace transform of the joint p.d.f. of

x._,,x.,x. , is found in a similar manner to the double

transform found earlier,

O -i V̂ . -. ™" O A J* i O -\ t . i

f * < « ' S ' s ) = E{e

F r f ^ S ^ X . -""S,^ X i ̂  S — X . -.
_ /// 1 i-l 2 i 3 i+lf , , , d d

v v v ^ -i -1 ' -i ' -i +1 ' i -1 -i i +1 *
x x x * X 1

The mixed partial derivatives with respect so s, and s~

are taken of this, and s, and S-, are set to zero. This form

is then inverted with respect to s2 and divided by the

marginal of x. . After subtraction of the product of the

conditional means, the conditional covariance remains,

Cov{Xi_1Xi+1|xi = t> = ~^ + {(l-0)*t-3}e

Although non-zero, the values of the conditional correlation

are small and are of no apparent aid in the estimation of

the correlation coefficient.
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VI. THE KTH-ORDER EXPONENTIAL MOVING AVERAGE MODEL

The basis for the first-order moving average model of

the previous section was the solution for the form of the

distribution of components of the double infinite error

sequence in the autoregressive model. In that model, however,

as applied to the exponential case, the unweighted term in

the moving average is just exponential. This suggests

making it a moving average of two further e's, i.e., e - . - i

and £•,->• Using this iterative procedure we get a moving

average of any desired order.

In observing the form of the first few exponential

models, a very clear pattern of progression is noted:

EMA1 x. = 3e. probability 3

probability (1-3)

EMA2 x. = 31ei probability ft^

probability (1-3,) 32

ei+2 probability (1-3-̂  (1-32J
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EMA3 x. = B,e. probability 3,

•

probability (1-

B1e± + 32ei+1 + B3ei+2 probability (l-3]_) d-B2>

+ 32ei+l + 33ei+2 probability (1-3-,^) (1-B2)

ei+3

And so forth. These may all be verified as forming probability

distributions. Moreover, the procedure is not specific to

exponential moving averages; all that is necessary is that

for given marginal distribution of the x.'s, the e. sequence

be that form which provides a solution for the first order

autoregressive model.

Now, rather than looking at these as probabilities and

associated terms, they may be analysed as terms with

associated probabilities, that is, the $-,£ • term appears in

all models with probability 1. Similarly the 3_e. , term

appears in all models (k _> 2) with probability (1 - 3-,) ,

etc. Complete generalization fails only in describing the

final term. The condition must be provided that a coeffi-

cient is not present in the final (i.e., k+ls_t) term of

the model.
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The use of a series of random indicator functions, I. ,

permits the complete description of the model with complete

generality to all orders in a closed form. Thus, for

n — j., •••, jc,

= °' probability

= 1, probability (1-B ),

where i refers to the ith term of the nth independent

sequence of independent Bernoulli random variables. So,

I. ~ i.i.d. Bernoulli (1, probability 1-3 / 0 otherwise).

Define I. to be identically 1 and 3, , to be identically
1 K. i .L

1 for all i.

Using this notation, the coefficient of the e. term

(for the x. element) is simply B-, • The second term is

30I. 'e.,,, the third 3,1. 'e, 9, etc. In closed fo
£• JL l~r X j J_ J_ i ̂

then, the kth-order moving average process is given by

where i is the serial number of the ith element of the

series, k is the order of the process, and j and n are

indices. For example, expanding this for the x.th element
JL"™ "

for the EMA3, we get
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x - ft e + R I P + R I I (2>
Xi ~ 3lei + e2Xi ei+l 33Ii Zi

The general form above can be established through mathemati-

cal induction with the expression for k = 3 and k = k above;

the expression for k = k+1 is

k j . k+1 , .

Xi = Z Bi + lei+-i n V + B £j = 0 3 + J- i+D n=0 i

n T < n>Jl J- • •*

n=0

The purpose in the creation of this model is to provide

models for data with longer dependence than that obtained

with the first-order model and to examine any tendencies of

the upper bound on the serial correlations to increase.

As mentioned earlier, using the standard formula for serial

correlation,

^Var{x±} Var{xi+.}

the only non-zero contributions to this correlation will be

a term in the joint expected value that is not present in

the product of the expected value of the marginals. In

terms of the model, this will occur only where there is a
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product of two identical error terms, e.g.,
2

E{e.e.+.} = B{e.}E{€j,.} = y , j ̂  0, by the independence

2 2of {e.}, whereas E{e. .e. .} = y + a , be definition, and

in the case where {e.} ~ Exponential (A),

E{ei+.ei+.} = 2/n2 = 2-E(ei}E{ei+.}. Therefore, if the

term Ce. .e.+. were to appear, its contribution to the

2 2 2 2covariance would be C(y + a ) - Cy = Ca , and the
2 2

contribution to the correlation would be CA /A = C. The

contribution of Ce.e. ./ however, would be zero.

Thus, for example, p, for the MA2 process is found as

follows:

x = 6 e + 61 e + I I (2)e
xi Vi Vi Ei+l Ii Ti ei+2

(1) (1) (2)
£i+2 + Zi+l Zi+l ei+3

This gives

pl = Bl32(1"ei) + B2d-B1) d-3]_) d-32) .

From this example, it is easy to note the pattern for

the serial correlations. This pattern may be condensed

for all serial correlations of all orders of the exponential

moving average process as
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where k is the order, j is the degree of serial correlation

and i, n, m indices. For a moving-average model, p. = 0
3 /*

for j > k.

Examining a few special cases,

1 i-1 i+k-1
P - z & n <i-en)e i+k n u-e )

i=l 1 n=0 n 1+JC m=0

as 3k+i is defined to be 1.

With 0 <_ 6 <_ 1, this correlation is clearly limited to

0 <_ p,, <_ 1/4. This may be obtained by setting (3, to 1/2 and

all others to zero. For notational purposes, this maximum

is achieved with the beta k-tuple of (.5,0,0,... ,0) . Any

change in the values of the other beta values will cause a

decrease in the value of p , .
K.K.

The first serial correlation coefficients of the first

two orders are given by
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1-1+1 i-1

i=0 1 n=0 m=0

as previously noted, and

2 i-1
p, 2 - s 3. n (1-3)3
*'2 i=l x n=0 n

n d-e )
m=0 m

(< 1/4)

32(1-31) d- 1/4)

= 32(1-31)

Letting A = 30(l-3n)f then p _ = A(l-A), with a maximum
£• 1 1 / -̂

of 1/4 at A = 1/2 = 32(1-3-^.

The second serial correlation coefficients of the

second and third order processes are given by

P2,2 : Pk,k k=2

which has a maximum value of 1/4 at 3 = (.5,0), and
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2 i-1 i+1
P2 3 = z Bi n (i-en)Bi+2 n d-3 )
'̂J i=l 1 n=0 n 1+2 m=0 m

33{31(1-31)d-32)}

which may be regarded as a convex combination (or weighted

average) of the two terms in braces, the mixture being

determined by the value of 3_. The term 3 is not present

in the terms in braces. The maximum value of each term in

braces is 1/4 (although not attained at the same time).

The maximum value for p0 _. is thus no greater than a weighted/, J

average of 1/4 and 1/4, or 1/4. This technique will be used

to establish the maximum value of p for a number of classes

of serial correlations.

One such class of correlations is that of the (k-1)st

serial correlation,

k-(k-l)+l i-1 i+k-1-1

pk-l k = E 3i n (1~Bn)3i+k-l n (1"3m) k - 2
k l'k i=l 1 n=0 n 1+k X m=0 m
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i-1

n
n=0

i+k-2

m=0
_
m

d-B)...(i-

d-B2) ... d-

(k >_ 2)

which is also a convex combination of terms each of whose

maximum is 1/4. Another class of correlations is that of

the (k-2)rKl serial correlation,

Pk-2 k
k 2'k n=0 m=0

3
= I

i-1

n=0

i+k-3

m=0
tl-B_)f k > 4

m
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(l-32)...d-3k_2)

• Wl'1-8!"1-'

d-32)

...d-3k_2)}.

As above, this is a convex combination of terms each of whose

maximum is 1/4. In this case, there are three terms, but

the "weights" still sum to unity. Therefore, this class of

serial correlations is also bounded above by 1/4.

A somewhat broader class of serial correlations is that

where 2j >̂  k+1. These correlations may also be specified

and a fixed upper bound obtained. Using the general expression

for correlations in the EMA model above, the individual

terms are
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pj,k

d-B2)

With the added restriction imposed that 2j >_ k + 1, the

above may be factored into another convex combination form:

j,k

d-B2)... (l-3j
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... (1-Bj)}

This form also has a maximum value of 1/4, being the

combination of terms each of whose maximum is 1/4.

Analysis of the remaining serial correlations of the

various orders of the EMA models is more difficult. The

following observations are made about the remaining correla-

tions and a speculation with respect to the implications of

these observations follows. Briefly, it appears as though

the maximum serial correlation of any order for any of these

models is 1/4.

A. Each serial correlation of each exponential

moving average model contains k-j+1 terms, each being the

product of various elements of 3- and (1-3.), (i=l,2,...,k),

B. Each of the individual terms is non-negative,

bounded above by 1/4 and below by 0.

C. When any one term is maximized (i.e., the 3

vector is adjusted to yield 1/4), the remaining terms are

each 0.

D. The sum of up to k-j terms can be shown to be

bounded by 1/4.

E. When terms are one-by-one maximized, the overall

serial correlation may be shown to be a local maximum.

With the above established, it is speculated that the

maximum value for any of the serial correlations is 1/4.
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This is borne out experimentally for EMA3 and EMA4 . The

scheme indicated below shows how the k-j+1 maxima for each

correlation may be obtained. The general formula for

serial correlation in the EMA model, again, is

k-j+1 i-1 i+j-1
p - z e n d-3n)3i+. n d-3 ).
D'K i=l 1 n=0 1+:) m=0

It should be noted in this formula that there are exactly

two beta elements in each term and that they are not the

same. Further, the 3- element, present in all terms, is

matched once and only once by a (1-3 •) element from the

second product. This is the sole restriction of the maximum

value on the individual term, as all other elements are

mentioned without their complements.

Using the above observations, it is clear to see that

each term is maximized in the following manner:

- 0

g. . , -> 3, = (Arbitrary — not mentioned
1+3+1 K in the term)
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Establishing this beta vector for the ith term will drive

the remaining terms to zero. The i+j-1 terms except the

ith each has a Q. element that has been set to zero. All
1

terms i+1 through k-j+1 have a (1-3. .) element which is

zero, owing to the first product in the general form, since

the i in this notation is at least one greater than the i

representing the ith term that has been maximized.

The following table summarizes the establishment of

the maximum serial correlations (each maximum is 1/4).
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Serial Correlations

EMA

Order

1

2

3

4

5

6

7

8

9

10

X

X

E

E

S

S

S

S

S

S

X

X

E

S

S

S

S

S

S

X

X

S

S

S

S

S

S

X

X X

X X X

X X X X

S X X X X

S X X X X

S S X X X

X

X

10

X

X - An exact analytic solution obtained for maximum
correlation

E - Demonstrated experimentally

S - Speculated
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APPENDIX

SIMULATIONS

INTRODUCTION

Chapter 4 addresses the question of estimating the

correlation parameter in the EARl model. Due to the

symmetric nature of the expected correlation, the conven-

tional method of estimating the serial correlation is less

than adequate. The following simulations apply the procedure

outlined in Chapter 4.

The simulations were performed in APL/360 at the Computer

Center at the Naval Postgraduate School. A brief description

of the functions used follows.

PROCEDURE

Three simulations were made of the test procedure

outlined in Chapter 4. The generated samples each contained

500 EARl sequences with mean 1. The first two were generated

with a correlation coefficient of .1 and the third with

one of .05. Sequence lengths are 10, 5, and 20, respectively.

In each case, a new set of random variables is formed

as z. = x. ,/x.. The minimum of these from each sequence

is recorded and the remainder discarded. The probability

that this minimum estimates the correlation coefficient

"exactly" is given in Chapter 4, and only the distribution

of the non-exact estimates are of real interest in the
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simulation. The "exact" estimates are therefore censored,

and the remaining sample examined for exponential tendencies

Moments of these samples are calculated and the values

are plotted as an empirical log survivor curve (Cox & Lewis,

1966). The plotted curves are very nearly linear which is

indicative of an underlying exponential distribution.

Johnson & Kotz (1970) give as maximum likelihood estimates

for the two parameters of a two-parameter exponential,

9 = Min (x.) and a = X - 6. The results are summarized

in the table below.

No further tests were conducted on these simulations;

however, a fourth simulation was made by generating 500

random exponential deviates with mean of . 1. These were

censored at the .1 point and were examined as above. The

results are nearly identical to the first simulation, adding

credibility to the speculation that the distribution of

the minimums is the two parameter exponential (n,p).
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EARl Simulation Summary

Simulation number I II III IV

Sample size 500 500 400 500

Number of terms in
each EARl sequence 10 5 20

Marginal exponential
parameter 1 1 1 .1

Correlation coefficient .1 .1 .05

Censored sample size 201 306 159 201

Sample mean .192 .307 .1 .203

Censoring point .1 .1 .05 .1

Minimum value (=8) .1 .1 .05 .1

ML Estimate of a (= X-6) .092 .207 .05 .103

Hypothesized value of .1 .2 .05 (.1)
a (=I/number in

sequence)
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USER-DEFINED APL FUNCTIONS

The following functions were employed in the simulations

conducted, and listed at the end of the output.

A. n. EXVAR .1 - Exponential random number generator.

n is the desired sample size of parameter !_ exponentials.

B. n_ BERN k - Bernoulli random number generator. n_

is the desired sample size of random variates of parameter k.

C. ri ARlll parm - EARl random sequence generator. n_

is the desired number of random sequences with parameters

parm. parm is a three-element vector of parameters where

parm(l) is the parameter for the marginal exponential,

parm(2) is the number of terms in the sequence, and parm(3)

is the correlation coefficient used to generate the sequence.

D. ZQUOT m - Takes a matrix consisting of a series

of sequences and returns a matrix such that z. • = x.., ./x. ..
i , 3 i+J-/ D !/ 3

E. LOGSURV n - Generates a vector of length n

for use as an axis in plotting the log survivor function.

Computes z = log {l-(i/n+l)} for a vector.

The remaining functions used are standard APL/360 library

functions and primatives.
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